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Abstract

An integral model is presented for predicting the evaporation rate from a single component
liquid layer exposed to wind. This approach simplifies the solution of the convection–diffusion
equation by averaging over the height of the concentration boundary-layer thickness. The model is
valid for hydraulically smooth as well as rough surfaces and yields results which are in good
agreement with those obtained by mathematically more rigorous methods. The new integral model
is conceptually simpler and provides an explicit estimate of the concentration boundary-layer
thickness. It allows a compact analytic solution for the evaporation rate with emphasis on the
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diffusion process in the laminar sublayer, accounted for by means of empirical wall functions.
q 1998 Elsevier Science B.V.
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1. Introduction

w xEvaporation processes are frequently encountered in our natural environment 1 but
they are also of interest in many technical applications, e.g. in the process industry.
Analyses of hazards related to loss prevention also require accurate prediction of
evaporation rates. The main objective herein will be the derivation of compact analytical
expressions for predicting the evaporation rates, in view of the needs of the loss
prevention analyst to produce quick but reliable estimates.

Past investigations of the evaporation phenomena in the free atmosphere include
w x w x ŽWebber and Brighton 2 and Boke and Hartwig 3 . In confined environments e.g.¨

. w xtunnels , new problems occur, as discussed by Wren et al. 4 .
The problem considered herein will be evaporation from wet surfaces, from pools or

spills exposed to an airflow or the atmospheric wind. For volatile fluids with high
vapour pressure, the evaporation rate will be high and the pool can cool down
considerably unless it is deep. In this case, heat transfer from the ground can be
important. For pools consisting of more than one component, concentration gradients

w xcan be important 5 . Here, only single-component pools will be considered.

1.1. General outline of the present contribution

The present study will be restricted to the problem of pool evaporation in the wind
field of a neutral atmosphere. The problem will be two-dimensional with an evaporating
surface of finite length in the flow direction but of infinite extent transverse to the flow
Ž .see Fig. 1 .

Ž . w xIn a general overview Section 2.1 , the two representative models of Sutton 6 and
w xBrighton 7 for solving the convection–diffusion equation will be presented. The

underlying assumptions and simplifications will be discussed, in particular, the improve-
ments of Brighton’s model with respect to that of Sutton.

Fig. 1. Concentration boundary layer above a liquid pool in the wind.
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In subsequent sections, the integral methods, familiar to engineers interested in mass
and heat transfer, following the lead of von Karman or Pohlhausen, are presented. Here,´ ´
the equations are satisfied only by averaging over the thickness of the concentration

w xboundary layer 8 . In order to demonstrate the main features of the integral method, the
integral formulation and the corresponding solution of Sutton’s model will be compared,
using the same physical assumptions as in the original model of Sutton.

A new method, based on the same physical assumptions as used in the method of
w xBrighton 7 , will be presented in Section 2.3. It is conceptually simpler and more

intuitive than the method of Brighton and makes use of the concept of boundary-layer
integral methods. As in similar applications in the past, it will be demonstrated that the
method offers good accuracy with little computational effort. The simple analytic
expressions for the mass-flow rate of the evaporating fluid will be useful for safety
studies. The present method allows also an explicit but approximate solution for the
thickness of the concentration boundary layer not derived in the mathematically more
rigorous approaches of Sutton or Brighton. The power profiles, approximating the
logarithmic velocity distribution, will be improved based on the analytic estimate of the
concentration boundary-layer thickness.

2. Evaporation from liquid surface layers and pools

Fluids, with boiling points well above the ambient temperature, are in a liquid state
Ž .under standard conditions e.g. water, diesel fuel, etc. and their evaporation rates are

small due to their small vapour pressures. The evaporation rate and how it changes with
time is controlled by a mass-transfer process.

2.1. General oÕerÕiew

w x w xThe solution of Sutton 6 as well as that of Brighton 7 of the convection–diffusion
problem will be presented in this section. The improvements of the approach of Brighton
with respect to that of Sutton will be outlined. The physical basis of both models will be
described as it is used also in the formulation of the integral model proposed herein.

The concentration field above an evaporating pool can be described by means of a
convection–diffusion equation. When simplified using the boundary-layer approxima-

w xtion, it takes the form 9 :

Ec E Ec
Xu z s K z . 1Ž . Ž . Ž .

Ex Ez Ez

Ž .In what follows, a rectangular pool of unit width bs1 and of length L in the
direction of the wind is considered. The gradients of velocity vanish in the flow
direction because the wind field is fully developed: EurExs0.

w xThe solution given by Sutton 6 will be discussed first. The velocity field is
Ž .napproximated by means of a power law: usu zrz , where u represents the velocity1 1 1

at a reference height z . Sutton presented his solution for a general exponent n, but1
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specified ns1r7 for neutral atmospheric boundary layers. A justification for this value
w xof the exponent is given, e.g. by Schlichting 8 . The exponent ns1r7 is hereby

derived from the resistance formula of Blasius for fully developed turbulent pipe flow.
w xThis is the same value used for flat plate flows 8 . Due to the similarity of the turbulent

flow in a pipe and over a flat plate, the same power law is used for the velocity profiles
w xin both cases 8 .

The mass-flow rate of the evaporating liquid EsyK X
EcrEz depends on the eddy

diffusivity K X describing the concentration field. The eddy diffusivity K X is proportional
X Ž .to the eddy viscosity K , i.e. K s 1rs K , with the turbulent Schmidt number denoted

s .
Sutton used von Karman’s formulation of the eddy viscosity with mixing length ls´ ´
EurE z w xk . Applying the ‘statistical theory method’, outlined in 6 , Sutton obtained for2 2E urE z

the eddy viscosity:

Ks0.1386 n 1r4 u3r4 z6r7zy3r28 , 2Ž .1 1

with ns1r7 in the power law for the velocity field.
The shear stress t is accordingly:

1r4
t n

2s0.020 u ,1ž /r u z1 1

when von Karman constant ks0.40 and a turbulent Schmidt number ss1 are used´ ´
w x6 .

The classical value of the coefficient from PrandtlrBlasius is 0.0225 for hydrauli-
w xcally smooth surfaces, remembered here for comparison 6,8 . The solution of Sutton is

based on the method of singularities, and the rectangular pool is modeled by superposi-
tion of line sources of infinite length transverse to the wind. For the area–averaged

w xmass–flow rate of the evaporating substance, Sutton 6 obtained:

y2r9 1r9 y1r9Es0.0277c Re z u L , 3Ž .s 1 1 1

where c is the vapour concentration for saturated vapour and Re su z rn . Thes 1 1 1

frequent use of Sutton’s model is due mainly to the compact analytic expression of E.
w xSome weak points of the model have been pointed out by Brighton 7 . One objection

is that the turbulent mass transfer is not linked to the molecular diffusion process, which
plays a major role in the laminar sublayer close to the evaporating surface. Moreover, E
is not formulated in dimensionless form with respect to the relevant similarity parame-
ters Re and Sc. Finally, parameters, such as the friction velocity u and the roughness

)

length z , that define the inner structure of the boundary layer, are not taken intoo

account. As an improvement, Brighton makes use of the logarithmic velocity distribu-
tion, defined by u and z , for the neutral boundary layer:

) o

u z
)

u z s ln . 4Ž . Ž .ž /k zo
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Ž w x w x.corresponding to a linear eddy-viscosity profile Ksk u z see Ref. 10 or 8 . The
)

Ž .logarithmic velocity distribution Eq. 4 is not well suited for an analytic solution of Eq.
Ž .1 and it is approximated by means of a power law:

nz
usu . 5Ž .1 ž /z1

Formally, this is the same as that used by Sutton, but in order to obtain an optimal
approximation in the concentration boundary layer, the reference height z should be1

related now to the thickness of the concentration boundary layer. Therefore, equality of
the velocity u and of the gradient durd z is required at location z for both profiles1

Ž . Ž .Eqs. 4 and 5 . Then u and n can be derived in a subsequent step. An estimate of z1 1
w xis given by the theory of line sources 10 .

Brighton used a linear eddy-diffusivity profile K X sKrssk u zrs , yielding the
)

Ž . Xlogarithmic velocity distribution Eq. 4 . By substituting K and the velocity distribution
Ž . Ž .Eq. 5 into the convection–diffusion Eq. 1 , he obtained the following linear differen-

tial equation:
nz Ec E k u z Ec

)

u s . 6Ž .1 ž /z Ex Ez s Ez1

Brighton solved this equation by means of Laplace transforms. He matched the
Ž .concentration profile, obtained by solving Eq. 6 , to a wall profile that introduces the

effects of molecular diffusivity in a small region close to the liquid surface. By using a
Ž w x. X Ž .linear eddy-diffusivity profile see, e.g. Ref. 10 EsyK EcrEzsy Krs EcrEzs

Ž .y Km zrs EcrEz can be integrated to obtain such a wall profile:
)

c E s z
s1y ln qb . 7Ž .ž /c c u k zs s ) o

The term b can be considered as an integration constant and accounts for molecular
diffusion processes in the laminar sublayer. b stems from empirical correlations and has
different forms depending on the properties of the surface. This can be either hydrody-
namically smooth or rough. An overview of the different forms of b , including a

w xdiscussion of the physical background, is given by Brutsaert 1 . A ‘heuristic’ represen-
tation of the two-layer model for the velocity and the concentration field, with
definitions used in the present work, is given in Appendix A.

w xBrighton 7 takes for the hydrodynamically rough surfaces:

u z
) o1r4 1r2bs7.3Re Sc y5s where Re s ,o o
n

and for the hydrodynamically smooth surfaces:

s s21r3bs 3.85Sc y1.3 q ln Sc q ln 0.135 .Ž . Ž . Ž .
k k

Ž . ŽThe profile given by Eq. 7 is universal in the vicinity of the wall for Schmidt
.numbers larger than 0.5 . It includes the molecular diffusion process in the laminar
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sublayer and the turbulent diffusion described by K X. In the following, it will be denoted
w xthe ‘wall profile’ in accord with Brighton 7 .

The effective roughness for hydrodynamically smooth surfaces is z s0.13 nru ;o )

Žwhereas only crude estimates are available for hydrodynamically rough surfaces cf.
w x.Brutsaert 1 . The integrals occurring in the algorithm of Brighton can be solved by

means of developments in series of the appropriate variables in the transformed space.
The results of this mathematically rigorous integration of the convection–diffusion
equation will be used for comparison with the results of the approximate integral
approach, which is developed in the present contribution.

2.2. General features of the integral procedures

This section deals with the integral approach of the convection–diffusion equation.
Integral methods, in general, are approximate methods where the boundary-layer
equations are satisfied only on an average extended over the thickness of the boundary
layer. These methods, which can be attributed to von Karman and Pohlhausen, are well´ ´

w xdocumented in Schlichting 8 . Techniques for approximating the profiles in a velocity
or concentration boundary layer are addressed and their limitations are discussed in this
reference.

Ž .On integrating Eq. 1 over the height d , one obtains:c

dcE Ecdc Xuc d zs K sE x . 8aŽ . Ž . Ž .H
Ex Ez0 0

Because the diffusive transport is much larger at the liquid surface than at the outer
edge d of the concentration boundary layer, whose thickness increases continuously,c

Ž .one obtains for the RHS of Eq. 8a :

Ec K Ec
XE x syK sy . 8bŽ . Ž .
Ez s Ezzs0 zs0

The concentration vanishes at the outer edge d of the concentration boundary layer,c
Ž . Ž XŽ . X .i.e., c d sc s0 or in case of c /0: c d s0 where c scyc . Such approxi-c ` ` c `

mate formulations of the boundary conditions are normally used in the integral approach
w x Ž .in boundary-layer theory 8 . With c d s0, the differential operator can be put in frontc

of the integral to obtain:

d dc
uc d zsE x . 9Ž . Ž . Ž .H

d x 0

Ž .The integration of Eq. 9 over the length L of the pool gives a mass-flow rate per
unit width, which is averaged over the length of the pool:

1 1L Ž .d LcEs E x d xs uc d z . 10Ž . Ž . Ž .H H
L L0 0

Ž .Fig. 1 allows a straightforward interpretation of this formula: Eq. 10 represents the
convective mass-flow rate through the vertical plane at location xsL.
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2.2.1. Integral formulation and the corresponding solution of Sutton’s model
The integration of the height–averaged differential equation for the convection-diffu-

Ž .sion problem, Eq. 9 , is the main objective of this section. Agreement between the
integral approach and Sutton’s work will be demonstrated. Basic assumptions related to
the physics of Sutton’s model, as discussed in Section 2.1, are therefore also used in the

Ž .present integral formulation. The eddy viscosity Eq. 2 , used by Sutton, is introduced in
Ž .Eq. 9 . In the integral approach, the profile for the velocity u is approximated using the

Ž .power law of Eq. 5 already used by Sutton. The one-seventh power law for the
velocity profile suggests also the form of the concentration profile, which fulfils the

Ž .following boundary conditions at the surface and at the outer edge, i.e., c zs0 sc ,s
Ž .resp. c zsd s0:c

1r7z
csc 1y . 11Ž .s ž /dc

The thickness of the concentration boundary layer, that can vary in the streamwise
Ž .direction, i.e., d sd x , is still unknown. Here, similarity concepts in boundary-layerc c

Ž . Ž Ž ..theory are used by choosing profiles where the ratio zrd with d sd x can bec c c
Ž .considered as a similarity variable h. Eq. 11 is only an approximation of the real

concentration profile in the concentration boundary layer up to the upper boundary
zsd . The good agreement of the area–averaged mass–flow rate with Sutton’s resultc

demonstrates the validity of the profile approximation, in particular the choice of the
Ž .one-seventh power in Eq. 11 . For a documentation of the integral approach, including

a discussion of different assumptions for the boundary-layer profiles, it is referred to
w xRef. 8 .

Ž . Ž .The mass-flow density flux E x , i.e. Eq. 8b , can be obtained with the help of the
Ž . Ž .eddy viscosity, Eq. 2 , and the concentration profile, Eq. 11 :

E x s0.020sy1c n 1r4 u3r4 zy3r28dy1r7, 12Ž . Ž .s 1 1 c

Ž .where E x does not depend on z.
Ž . Ž . Ž .With the profile assumptions Eqs. 5 and 11 , the integral on the LHS of Eq. 9 can

Ž . Ž . Ž .be evaluated. Substituting E x from Eq. 12 in the RHS of Eq. 9 , a differential
Ž .equation for the unknown concentration boundary-layer thickness d x is obtained. Thec

solution is:
7 7 1 7 7

y yd x s0.318s u z n x . 13Ž . Ž .9 36 36 36 9c 1 1

Ž . Ž .With this result, the mass-flow density flux E x , Eq. 12 , is also known. The
Ž .integral in Eq. 10 can be evaluated to yield the area–averaged mass–flow rate:

1 L y8r9 y2r9 1r9 y1r9Es E x d xs0.0262s c Re u z L . 14Ž . Ž .H s 1 1 1L 0

The coefficient 0.0262 is quite close to Sutton’s value 0.0277. The numerical value
obtained depends on the von Karman constant, the value used here is ks0.40. For the´ ´
turbulent Schmidt number, Sutton chose the value s(1. In contrast to Sutton’s model,
the solution obtained from the integral formulation yields also an estimate of the

Ž .thickness of the concentration boundary layer d x with elementary algebra.c
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2.3. Present integral model

The approximate profiles for velocity and concentration, which are required for the
integration of the height–averaged differential equation for the convection–diffusion

Ž . w xproblem, Eq. 9 , are identical with those used by Brighton 7 . The profile for velocity
Ž . Ž .is given by Eq. 4 and the profile for concentration by Eq. 7 .

The term b is discussed in Section 2.1. Since the concentration profile includes the
molecular diffusion processes in the laminar sublayer as well as the turbulent diffusion

X Ž .described by K Section 2.1 , it represents a reasonable approximation for the whole
height of the concentration boundary layer. The boundary conditions are accordingly

Ž .csc at the liquid surface or inner edge and c zsd sc s0 at the outer edge of thes c `

concentration boundary layer. If the evaporating component is present in the outer field,
csc /0. In this case, a new variable cX scyc is defined.` `

w xIn the ‘exact’ analytic solution of Brighton 7 , the logarithmic velocity profile was
Ž .approximated by a power law given in Eq. 5 .

The value of the reference height z should be related to the thickness of the1

concentration boundary layer. It will be discussed later. The values n and u are1

determined by the requirement that the power law should be a suitable approximation to
the logarithmic velocity profile at height z :1

1 z1
s ln , 15Ž .ž /n zo

and:

u 11
s . 16Ž .ž /u k n

)

Ž . Ž .Eq. 16 is substituted into Eq. 5 to obtain:
nu 1 z

s . 17Ž .ž / ž /u k n z
) 1

Ž .Since Eq. 7 is not well suited for an analytic integration over the relevant height of
the convection–diffusion equation, an approximation is also required for the concentra-

Ž . Ž .tion field. By combining Eq. 4 with Eq. 7 , one obtains a concentration profile which
is consistent with the velocity profile:

c E u
s1y s qb , 18Ž .ž / ž /c c u us s ) )

Ž .and with the approximation Eq. 17 for u:
nc 1 z E

X Xs1yE s qb where E s . 19Ž .ž / ž /c k n z c us 1 s )

In order to obtain a suitable approximation for the concentration boundary layer, z is1

set equal to the thickness d of the concentration boundary layer at the end of the pool.c

z sd xsL .Ž .1 c
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Ž Ž .The mean value z s0.5d xsL would be more accurate, but the effect on the1 c
.final numerical result is small .

The value of n is unknown a priori, but the value ns1r7, from the power law for
the velocity, can be taken as a first approximation, as d is unknown in the first iterationc

Ž .step. A better value of n can be obtained from Eq. 15 in a subsequent step.
The boundary condition csc s0 is valid at the outer edge zsd of the concentra-` c

Ž . Xtion boundary layer. On using this condition in Eq. 19 , which is solved for E , one
obtains:

y1n
s dcXE s qb . 20Ž .ž /k n z1

Ž .The boundary condition c zs0 sc at the liquid surface or inner edge of thes

boundary layer is not correctly accounted for. In effect, it is shifted from the liquid
surface zs0 to a finite but small z-value, producing a small error. This error in the

Ž .concentration profile near the wall has little effect on the final result for two reasons: a
the approximation of the logarithmic velocity profile by means of a power law is not

Žvery accurate in the vicinity of the wall anyway likewise true for the ‘exact’ solution of
. Ž .Brighton , and b the convective contribution in the neighbourhood of the wall is

negligible. Also, the mismatch of the concentration gradient EcrEz at the outer edge of
the concentration boundary layer zsd , which cannot be correctly accounted for, is ac

weak point here, as in other integral boundary-layer solutions using power-law profiles.
The successful comparison of the results obtained, by the present model with those of
Brighton, supports the validity of the assumptions made.

Ž .The convection–diffusion equation in integral form, Eq. 9 , can be written in the
non-dimensional form:

z d u cŽ .d rz1 X Xc 1 d z sE , 21Ž .HXž / ž / ž /z d x u c0o ) s

when the dimensionless variables xX sxrz and zX szrz are introduced. The coordi-o 1

nate x is nondimensionalized by the roughness length z , which is assumed constant foro

the problem considered, in accord with Brighton. The definition of zX is also in accord
with Brighton; z corresponds approximately to the thickness of the concentration1

boundary layer.
Ž . Ž . Ž .The ratio z rz , from Eq. 15 , can be substituted into Eq. 21 to give:1 o

d u cŽ .d rz X Xc 11r ne d z sE . 22Ž .HX ž / ž /d x u c0
) s

Ž . Ž . Ž .The profiles Eqs. 17 and 19 are now substituted into the integrand of Eq. 22 .
Upon evaluation, one obtains:

1q2 n 21 d d k n 1qn 1q2nŽ . Ž .cX XE sE with C s . 23Ž .X 1 1r nž /C d x z s e1 1

Ž . Ž .The differential equation Eq. 23 and the algebraic equation Eq. 20 can be solved
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for the unknown dimensionless mass-flow density flux EX and the boundary-layer
thickness d . The solution procedure, which is based purely on algebraic operations, canc

be found in Appendix B.
The solution for the thickness of the concentration boundary layer is:

1
d 1 nc 1q2 nXs C C x with C s1q . 24Ž . Ž .1 2 2ž /z 2 1qn1

Ž . XWhen this result is substituted into Eq. 20 , the mass-flow density flux E can be
obtained:

y1n
s 1q2 nX XE s bq C C x . 25Ž . Ž .1 2

k n

The concentration boundary-layer thickness, normalized by the known roughness
length z , is:o

1
d z dc 1 c 1q2 nX1r ns se C C x , 26Ž . Ž .1 2ž /ž / ž /z z zo o 1

Ž . Ž . Ž . Ž .where z rz is provided by Eq. 15 and d rz by Eq. 24 .1 o c 1

Now the estimate of the power n can be improved. The first approximation of n will
Ž .be denoted by n . The logarithmic profile Eq. 4 for the velocity field is approximateda

Ž .by the power law of Eq. 5 . In order to describe the convective transport of the
evaporated fluid adequately, the power-law approximation should be valid over the
height of the concentration boundary layer. This is achieved when z corresponds1

approximately to the thickness of the concentration boundary layer at the downstream
Ž .edge of the pool d xsL .c

Ž .An improved value of z corresponding to d xsL , denoted z , can be1 c 1new
X X Ž .obtained when x is set equal to L in Eq. 26 , i.e.,

1

z d xsLŽ . 1q2 n1new c aX1r nas se C C L . 27Ž . Ž .1 2ž / ž /z zo o

Ž . Ž .When z rz is substituted into Eq. 15 , an improved value of n is obtained:1new o

1 z 1 11new Xs ln s q ln C C L with n s1r7. 28Ž . Ž .1 2 až /n z n 1q2no a a

Ž X 3.The values of n at both extremes of the range considered here are n L s10 (1r4.5
Ž X 7.and n L s10 (1r11.6. The calculations documented in Figs. 2 and 3 are based on

Ž . Ž .the values of the power n given by Eq. 28 one iteration .
The dimensionless mass-flow rate, averaged over the pool area, is:

1q2 n
X1 1 dL cX X X XE s E d x s E , 29Ž .HX X ž /L L C z0 1 1 X Xx sL
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Fig. 2. Area–averaged dimensionless mass–flow rate for the evaporation above a hydrodynamically smooth
Ž . w xsurface Parameter Scs4; 2; 1; 0.5; from the left to the right ‘exact solution’ of Brighton 7 : - - -, numerical

solution by means of the integral formulation: – P –, approximate analytic solution of the integral formulation:
Ž Ž .. w x ŽEq. 30 , numerical values of Reijnhart et al. 12 : I I, Parameter Scs1.7; 1.4;

. w x Ž .1.0; from the left to the right , experimental values of Reijnhart and Rose 11 Scs1.7 : v v.

X Ž .where the integrand E is given by the LHS of Eq. 23 . The initial condition that the
Ž X .concentration boundary layer starts at the upstream edge of the pool, i.e. d x s0 s0,c

has been used here.
Ž .The dimensionless area–averaged mass–flow rate Eq. 29 can be rewritten, when

Ž . Ž . Ž .Eqs. 24 and 25 are substituted into Eq. 29 :

C2XE s . 30Ž .n
s 1q2 nX

bq C C LŽ .1 2
k n

Ž .with the power n given by Eq. 28 .
XThe mass-flow rate, averaged over the pool area is now EsE u c sk c where

) s m s

k is the mass-transfer coefficient.m

The area–averaged dimensionless mass–flow rate, as obtained by means of the
Ž .compact expression Eq. 30 , can be compared to the area–averaged dimensionless
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Fig. 3. Area–averaged dimensionless mass–flow rate for the evaporation above a hydrodynamically rough
Ž 1r2 .surface Parameter Re Scs100; 50; 20; 10; 5; 2; 1; from the left to the right ‘exact solution’ of Brightono

w x7 : - - -, numerical solution by means of the integral formulation: – P –, approximate analytic solution of the
Ž Ž .. w xintegral formulation: Eq. 30 , numerical results of Reijnhart et al. 12 : ^ ^,

w x Ž . w x Ž .correlations of Brutsaert 1 evaporation pans : ` `, correlations of Brutsaert 1 lakes :
I I.

mass–flow rate, determined by means of Brighton’s model, for the hydrodynamically
Ž . Ž .smooth case cf. Fig. 2 as well as for the hydrodynamically rough case cf. Fig. 3 . The

discrepancy is always less than 10% In case of a fixed power nsn s1r7, instead ofa
Ž . Žthe improved value given by Eq. 28 , the discrepancy can exceed 20% for Scs0.5

Ž . 1r2 Žhydrodynamically smooth surface and for Re Scs1 hydrodynamically rougho
..surface .

A comparison with the most recent experimental and theoretical data for evaporation
of single component liquids, as already presented by Brighton, is shown in order to give
an idea of the accuracy of the present model. The main features of the different

w x Žapproaches will be resumed here. The experimental data of Reijnhart and Rose 11 Fig.
.2: v v v, Scs1.7 for smooth surfaces were obtained in a wind tunnel. They

provided numerical values for u and achieved a fully developed logarithmic boundary
)
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layer, two prerequisites for a reasonable comparison to the present model or that of
Brighton. Both requirements are generally not met in most experiments reported in the

w x Žliterature. The numerical solution of Reijnhart et al. 12 Fig. 2: I I,
.Scs1.0; 1.4 and 1.7 for solving the convection–diffusion equation, with allowance for

molecular effects near the wall, is based on physical arguments similar to those of the
present model.

w x w xThe numerical results from Reijnhart and Rose 11 , using the Reijnhart et al. 12
model for rough walls, with no allowance for molecular diffusion at the wall, correspond

1r2 Ž .to the following value of the parameter Re Scs0.34 Fig. 3: ^ ^ . Theo
Ž .correlations for large evaporating surfaces, like lakes, Fig. 3: I I and for

Ž . w xsmall evaporation pans Fig. 3: o o , given by Brutsaert 1 , are based on his
recommended value z s2.28=10y4 m. The discrepancies observed have to beo

w xconsidered in the light of the scatter of the original data used by Brutsaert 1 . The
existence of a roughness change from the shore to the evaporating surface has also been
ignored in the present model. In order to render a comparison possible, Brighton
assumed a typical wind speed of 5 mrs at height 10 m, yielding Re s2.8 ando

Re1r2 Scs1.0 under these conditions.o

When the vapour pressure of the fluid is high, the normal velocity at the pool surface
is considerable and the convective contribution to the vertical mass transfer cannot be
neglected. With the boundary condition, stipulating that no air penetrates into the pool
Ž . Žone-sided diffusion , the dimensionless mass-flow rate at high vapour pressure cf.

w x.Refs. 7,13 can be obtained:

p pvX XE syE ln 1y ,p ž /p pv

where p is the total pressure and p is the vapour pressure.v

The area–averaged dimensionless mass–flow rate can be written accordingly:

p pvX XE syE ln 1y . 31Ž .p ž /p pv

X Ž .where E is given by Eq. 30 . The area–averaged mass–flow rate E is:

XE sc u E sc k . 32Ž .p s ) p s m

( )2.3.1. Dependence on pool length comparison with Sutton
The dependence of the area–averaged mass–flow rate E on the pool length L will be

Ž .analysed next. Eq. 30 yields:

C2XEsc u E sc u . 33Ž .ns ) s )

s 1q2 nX
bq C C LŽ .1 2

k n
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1q2 nX L 1 bk n
nb in the denominator can be neglected if the length of the pool L s 4 .Ž .z C C so 1 2

It follows:
yn

1q2 nXEf L . 34Ž . Ž .
With ns1r7, Sutton’s well known dependence on pool length is recovered as a

Ž Ž .. Ž .particular case see Eq. 14 . It follows that the validity of Eq. 34 , adopted by Mackay
w xand Matsugu 14 and many other authors as a basis for empirical or numerical models,

is restricted. The neglect of b would be equivalent to the neglect of the laminar
sublayer.

2.4. Heat transfer

Ž .A convection–diffusion equation for the temperature field, analogous to Eq. 1 , can
w x Ž .be formulated in case of heat exchange with the ambient 9 . The solution Eq. 30 can

be adopted accordingly for the area–averaged dimensionless heat-flux:

C2XE s , 35Ž .nh
sh 1q2 nX

b q C C LŽ .h 1 2
k n

and the dimensional area–averaged heat-flux:

C2XE src u T yT E s rc u T yT , 36Ž . Ž . Ž .nh p ) ` s h p ) ` s
sh 1q2 nX

b q C C LŽ .h 1 2
k n

or, in compact form, in terms of the heat-transfer coefficient k :h

E sk T yT . 37Ž . Ž .h h ` s

Ž .b corresponds to the b of Eq. 7 where the Schmidt number Sc has to be replaced byh

the Prandtl number Pr. There is still some discussion about the best value of the
w xturbulent Prandtl number s , with proposed values ranging from 0.74 to 1.0 1 . A valueh

for the turbulent Prandtl number s s0.85, which is consistent with the turbulenth

Schmidt number used by Brighton, is considered to be reasonable.

2.5. Heat balance of the pool

A general formulation of the heat balance of a pool is given by:

dTs
m c syE r qE qqA qq A , 38Ž .˙ ˙ll ll p e h p s pd t

where m is the mass of the pool, c its specific heat, E r the loss of heat due toll l p e

evaporation, E the heat addition from the wind or airflow, qA the heat addition from˙h p

the ground and q A the heat addition by radiation. The system attains an equilibrium˙s p
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state when the heat needed for evaporation is balanced by the heat gained from the
Ž .airflow. In this case, the heat balance of the pool Eq. 38 yields, in terms of the

area-averaged quantities:

0syE r qE . 39Ž .p e h

Ž . Ž .The expressions in Eq. 32 for E and Eq. 37 for E can be substituted into Eq.p h
Ž .39 to obtain:

1 kh
T yT sc . 40Ž . Ž .` s sr ke m

It has been assumed here that no radiation is present and that the pool temperature is
equal to the temperature of the ground. When the vapour pressure is low and when the

Žmolecular Schmidt and Prandtl numbers are equal including the case when the turbulent
.Schmidt and Prandtl numbers are assumed to be equal, i.e. sss , a well-knownh

w xformula, e.g., used in psychometry, is reproduced 15 :
rcp

T yT sc . 41Ž . Ž .` s sre

When the airflow over the pool is purely laminar, one obtains for nonequal Schmidt
and Prandtl numbers:

2r3
rc Scp

T yT sc . 42Ž . Ž .` s sž /r Pre

This expression, often generalized to the turbulent case, does not account for the
Ž .laminar sublayer, in contrast to Eq. 40a .

Ž .Both the left and the right hand side of Eq. 40 can be represented graphically as
functions of the temperature T . The temperature at the equilibrium point is found by thes

Ž .intersection of the near linear contribution of the left hand side with the concentration
Ž .at the saturation point c sc T of the right hand side. It is noted that c is large fors s s s

volatile fluids with high vapour pressure, so that the pool can cool down considerably.
In this case, heat transfer from the ground becomes important. The temperature, the
vapour pressure and the evaporation rate will depend strongly on time when the initial

Ž w x.temperature of the pool is near ambient or higher Wren et al. 4 .

2.6. Summary of the procedure

Ž . Ž . Ž .When Eq. 30 is substituted into Eq. 31 , which in turn is substituted into Eq. 32 ,
the calculation of the area–averaged mass–flow rate can be reduced to the evaluation of

Ž . Ž .the two expressions Eq. 43 and Eq. 28 :

p p Cv 2 XE syc u ln 1y sk c L sLrz ,Ž .np s ) m s ož /p p sv 1q2 nX
bq C C LŽ .1 2

k n
43Ž .
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with:

k 2 n 1qn 1q2n 1 nŽ . Ž .
C s C s1q .1 21r n 2 1qns e

Ž .The power nsn is given by Eq. 28a , which is written in a form suitable for aniq1

iterative procedure:

1 1 1
Xs q ln C C L , 28aŽ . Ž .1 2n n 1q2niq1 i i

with the starting value n sn s1r7. Numerical experiments show that one iteration isi a

sufficient.
The total mass-flow rate is E sAE with the surface of the pool AsLb and itsp p

length L in the streamwise direction.
The calculation of the heat-flux averaged over the surface area of the evaporating

Ž .pool can be calculated in an analogous manner with Eq. 36 :

XE src u T yT EŽ .h p ) ` s h

C2
s rc u T yT sk T yT , 36aŽ . Ž . Ž .n p ) ` s h ` s

sh 1q2 nX
b q C C LŽ .h 1 2

k n

Ž .with nsn given by Eq. 28a .im

When the system has attained an equilibrium state, the temperature at the saturation
Ž .point T is given by Eq. 40 :s

1 kh
T yT sc T . 40aŽ . Ž . Ž .` s s sr ke m

3. Discussion

The present work is focused on an integral model for solving the height-averaged
convection–diffusion equation. One main objective is to develop a simple solution of the
convection–diffusion problem and a second objective is to show the potential capabili-
ties of the integral approach in general. In this approach, the equations are integrated
over the thickness of the concentration boundary layer thereby reducing the number of
independent variables by one. Results of the present model are compared to those
obtained with Brighton’s model in Figs. 2 and 3. Brighton’s model is considered as a
reference here since it has been validated by comparison with carefully compiled
experimental data. Fig. 2 is related to the hydrodynamically smooth case with the
Schmidt number as parameter and Fig. 3 to the hydrodynamically rough case with

1r2 ŽRe Sc as parameter. The good agreement between the numerical solution Appendixo
Ž . .A, Eq. B8 , obtained by means of the Runge–Kutta procedure and Brighton’s ‘exact’
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solution confirms the approximations and simplifications made in the present integral
model.

A feature of the integral model, not encountered in Brighton’s model, is related to the
approximation of the concentration profile. The chosen profile, required for the integra-
tion of the height-averaged convection–diffusion equation, does not account for all the
boundary conditions correctly. Comparison with Brighton’s more rigorous mathematical
approach shows, however, only a minor loss in accuracy of the present approximate
approach. It can be concluded that the concentration profile, used in the present integral
procedure and which accounts for the laminar sublayer by means of the parameter b , is
approximated adequately.

Brighton’s estimate of the boundary-layer thickness is based on Batchelor’s model
Ž w x.with continuous line sources cf. Brighton 7 . The present model, in contrast, allows

the determination of the thickness of the concentration boundary layer. A new power n
for the velocity profile can be derived, which is consistent with the model, yielding an
improved approximation to the logarithmic profile over the thickness of the concentra-
tion boundary layer.

The approximate analytic solution differs somewhat more from Brighton’s ‘exact’
solution. The accuracy could be improved by extending the analytic solution to higher
order, but the additional effort at the expense of simplicity and physical insight is hardly

Žjustified in light of the uncertainties in the parameters defining the problem roughness,
.etc. .
In conclusion, the integral approach, which includes the possibility of estimating the

thickness of the concentration boundary layer, provides a more intuitive, in some ways
conceptually simpler, view of the problem than a mathematically more rigorous ap-
proach. The simplicity of the results obtained by means of the present approach comes at
the expense of the numerical accuracy, but the compactness of the corresponding

Ž .analytical expressions see Section 2.6 meets the requirements of producing quick and
reliable estimates for safety studies.

Appendix A

A ‘heuristic’ representation of the two-layer model for the velocity and the concentra-
tion field, including a laminar sublayer and a turbulent logarithmic boundary layer is
given in this appendix.

The fully turbulent region, at a certain distance from the surface, can be described by
means of the eddy viscosity Ksk u z, which after integration of tsrKEurEz, yields

)

w xthe well-known logarithmic velocity profile 8 :

u z
)

u z s ln , A1aŽ . Ž .ž /k zo

where z is an integration constant, called roughness length. In dimensionless form:o

u 1 z
qu s s ln . A1bŽ .ž / ž /u k z

) o
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Fig. 4. Two-layer representation of the velocity field and of the concentration field.

When the mass-flow rate of the evaporating liquid is EsyK X
EcrEz, with the eddy

X Ž Xdiffusivity K describing the concentration field K sKrs , with the turbulent Schmidt
. Žnumber s , one obtains in an analogous manner a logarithmic concentration profile see
w x w x.Brutsaert 1 or Schlichting 8 .

Es z Es z zo
c ycs ln s ln q ln , A2aŽ .s ž / ž / ž /k u z k u z z

) ov ) o ov

where the integration constant z is designated vapour roughness length. In dimension-ov

less form:
c yc s zsqc s s ln . A2bŽ .ž /Eru k zŽ .

) ov

Ž .When the Schmidt number is close to unity, the scaled velocity and concentration
fields are similar. If the upper edge of the viscous sublayer is denoted by z , ones

obtains:
1 zsqu s ln , A1cŽ .s ž /k zo

and:
s zsqc s ln , A2cŽ .s ž /k zov

where the subscript s denotes the quantities at the upper edge of the viscous sublayer
Ž .Fig. 4 . In this simplified representation of the velocity and concentration fields, the
transition layer, where both turbulent transport and molecular diffusion are present, has

Ž .been neglected dashed line in Fig. 4 . The viscous sublayer is ‘patched’ to the fully
Ž .turbulent logarithmic layer at height zsz . z can be eliminated from Eq. A1c ands s

Ž .Eq. A2c to yield:
z k ko q qln s c ys u s b Sc,Re . A3Ž . Ž .Ž .s s ož /z s sov
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Ž . Ž .Eq. A3 can be substituted into Eq. A2a with the result:

c E s z
s1y ln qb . A4Ž .ž /c c u k zs s ) o

For ScG1, the molecular diffusion sublayer is contained inside the viscous sublayer
Ž .of the velocity field. Empirical correlations, analogous to Eq. A3 , have been set up for

Schmidt numbers deviating from unity. They are universal and depend on the Schmidt
w xnumber only 1 .

Ž .Note: Sometimes z is replaced by zyd , which is equivalent to a shift in referenceo
Ž . Ž w x.level. The d is called a zero-plane displacement height Brutsaert 1 .o

Appendix B

Ž . Ž .The differential equation Eq. 23 and the algebraic equation Eq. 20 can be solved
for the unknown dimensionless mass-flow density flux EX and the boundary-layer
thickness d .With the substitution:c

1
dc 1q2 nsG , B1Ž .ž /z1

Ž .Eq. 23 can be written:

1 d
X Xw xEG sE , B2Ž .XC d x1

Ž .and Eq. 20 :

y1n
s

1q2 nXE s G qb . B3Ž .
k n

X Ž . Ž .E of Eq. B3 can be substituted into Eq. B2 to obtain:

y1 y1n n° ¶1 d s s
1q2 n 1q2 n~ •G G qb s G qb . B4Ž .X¢ ßC d x k n k n1

Ž .The differentiation on the LHS of Eq. B4 is performed and the dependent variable
G and the independent variable xX are separated to give:

n
1qn 1q2 n 1q2 ngG q1Ž . s1q2n X nd gG sC d g x with gs . B5Ž . Ž . Ž .n 1 ž /k nb

1q2 n
gG q1Ž .

X ŽThe equation can be integrated starting at x s0 the beginning of the concentration
. Ž . Ž X . Ž X. Ž .boundary layer with d xs0 s0, i.e., G x s0 s0, or g x s0: gG s0.c
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Ž .An approximate analytic solution can be obtained because the integrand in Eq. B5
is close to unity in all cases.

Ž . X1. In the limit G™0, the integrand in Eq. B5 is unity and the solution is GsC x .1
Ž . Ž . Ž .2. In the limit G™`, the integrand in Eq. B5 tends towards 1qn r 1q2n and the

w Ž .x Xsolution is GsC 1qnr 1qn x .1

The solution of interest lies between these two extremes. The average of the two
preceding extreme conditions can be considered as an approximation:

1 n
X

GsC 1q x , B6Ž .1 2 1qn

valid for the whole range of G .
Ž .This solution is confirmed by a perturbation analysis where gG is expanded with

Ž .respect to the small parameter ´snr 1q2n . The difference between the resulting
Ž . 2expression for G and Eq. B6 is small of order n .

Ž .It has been confirmed by numerical integration of Eq. B5 , for two representative
Ž .values of n i.e., ns1r7 and ns1r3 that the relationship is almost linear for the

X Ž X .range of x of interest 0Fx -Lrz . The thickness of the concentration boundaryo
Ž . Ž .layer can be obtained when Eq. B6 is substituted into Eq. B1 :

1
dc 1q2 nXs C C x . B7Ž . Ž .1 2ž /z1

Ž . Ž .Eq. B5 can be written in a form suitable for a numerical integration Runge–Kutta :
n

1q2 nd G gG q1Ž .
sC . B8Ž .nX 1d x 1qn 1q2 n

gG q1Ž .
1q2n

The integration is performed with respect to the independent variable xX because its
X X Ž X.range is well defined, i.e., x s0%L . By integration, one obtains G x and in

Ž X. Ž . XŽ X.particular G L . Eq. B3 yields E L .
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